

Al Agents in Smart Spaces

DigitAlnability^{3D}

29 November 2024

Aygün Varol

- □ Doctoral Researcher at Tampere University
- ☐ Affiliated with Augmentative Technology Group

Outline

- What are smart spaces?
- Role of Al and their applications
- Challenges of utilizing AI
- Al agents
- What can go wrong?
- Prototype of local running Al agent

Smart Spaces

Smart Spaces

- Smart spaces are indoor environments equipped with computational capabilities and interconnected IoT devices such as sensors, actuators or machines
- They interpret sensory data to offer variety of applications to users

'IoT enables objects to connect, communicate over the Internet'

Key Components

- Sensor technologies
- Data communication
- Network management
- Data collection and processing

Sensor Technologies

Environmental Sensors

Infrared Sensors

Cameras

Data Communication

Wireless Communication Technologies

100m

WLAN Wi-Fi

1km

WWAN EC-GSM-loT NB-loT LTE-M

Network Management

Energy management is important for the deployment of battery powered sensors

Data Collection and Processing

- Sensors generate data with different volumes, variaties, and velacities
- Applications often require real-time data processing

Cloud Computing

- Offers substantial computing power
- Concern of privacy
- Sending and receiving data takes time

Edge Computing

- Lower computational capabilities
- Improved privacy
- Reduce latency

Example Applications

- Energy management
- Security
- Environmental monitoring
- Automation and control

Limitations

- Current systems typically rely on rule based automation and manual configuration without adapting user behaviors
- They lack of capacity to interpret data and generate meaningful actions for the future
- ■To overcome these limitations, smart spaces require Al-driven solutions

Role of AI in Smart Spaces

Evolution of Artificial Intelligence

Traditional Machine Learning

- Multi Layer Perceptron
- Random Forest
- Support Vector Machines
- K-Nearest Neighbors

Activity classification

O. Majidzadeh Gorjani, R. Byrtus, J. Dohnal, P. Bilik, J. Koziorek, and R. Martinek, "Human activity classification using multilayer per ceptron," Sensors, vol. 21, no. 18, p. 6207, 2021.

Deep Learning

- Convolutional Neural Networks
- Recurrent Neural Networks
- Autoencoders
- Long Short-Term Memory
- The Gated Recurrent Unit

People counting with IR sensors

Xie, C., Daghero, F., Chen, Y., Castellano, M., Gandolfi, L., Calimera, A., ... & Pagliari, D. J. (2023). Efficient deep learning models for privacy-preserving people counting on low-resolution infrared arrays. *IEEE Internet of Things Journal*, *10*(15), 13895-13907.

Transformer-based Networks

 Transformer networks are deep learning architectures with selfattention mechanism, allowing them to capture important parts of the data

Action anticipation

Roy, D., & Fernando, B. (2021). Action anticipation using pairwise human-object interactions and transformers. *IEEE Transactions on Image Processing*, *30*, 8116-8129.

Transformer-based Networks Applications

Activity recognition

Chen, J., Xu, X., Wang, T., Jeon, G., & Camacho, D. (2024). An AloT Framework With Multi-modal Frequency Fusion for WiFi-Based Coarse and Fine Activity Recognition. *IEEE Internet of Things Journal*.

Fall detection

Khan, M. Z., Usman, M., Ahmad, J., Rahman, M. M. U., Abbas, H., Imran, M., & Abbasi, Q. H. (2024). Tag-free indoor fall detection using transformer network encoder and data fusion. *Scientific reports*, *14*(1), 16763.

Large Language Models (LLMs)

- LLMs are deep learning models trained on big datasets often comprising billions of parameters
- Leveraging self-attention mechanism to process and understand natural language
- through access external data Retrieval-Augmented Generation (RAG)

OpenAl's Generative Pre-trained Transformer (GPT)

Converting natural language commands into actions

King, E., Yu, H., Lee, S., & Julien, C. (2023). "Get ready for a party": Exploring smarter smart spaces with help from large language models. *arXiv preprint arXiv:2303.14143*.

Activity classification

Civitarese, G., Fiori, M., Choudhary, P., & Bettini, C. (2024). Large Language Models are Zero-Shot Recognizers for Activities of Daily Living. *arXiv preprint arXiv:2407.01238*.

Meta Al's Large Language Model (LlaMA)

 The LlaMA is a powerful family of autoregressive language models designed to provide efficient, high-quality language understanding

Converting natural language commands into actions

Yin, Z., Zhang, M., & Kawahara, D. (2024). Harmony: A Home Agent for Responsive Management and Action Optimization with a Locally Deployed Large Language Model. *arXiv preprint arXiv:2410.14252*.

Google's Bidirectional Encoder Representations from Transformers and Gemini Gemini

Detecting behavioral changes

Akbari, F., & Sartipi, K. (2022, June). A Transformer-based Model for Older Adult Behavior Change Detection. In 2022 IEEE 10th International Conference on Healthcare Informatics (ICHI) (pp. 27-35). IEEE.

HVAC control for energy management

T. Sawada, T. Hasegawa, K. Yokoyama, and M. Mizuno, "Office-in the-loop for building hvac control with multimodal foundation models," in Proceedings of the 11th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, 2024, pp. 110–120.

Challenges of Utilizing Al

- 1. Energy consumption
- 2. Computational burden
- 3. Privacy and data security concerns

Al Agents in Smart Spaces

 Al agents compute resources available in the space according to user preferences and predicts user behavior to proactively offer services

	Al-Driven Smart Space
User Interaction	□ Natural language processing (e.g., voice commands) and predictive personalization.
Applications	☐ Predictive healthcare, adaptive environments, and advanced analytics.
Challenges	☐ High computational demand, privacy concerns

What Can Go Wrong?

- Malicious exploits
- Breaches of personal data
- Loss of human oversight
- Bias in decision-making
- Ethical concerns

Bias in Decision-Making & Ethical Concerns

```
>>> set_seed(42)
>>> generator("The White man worked as a", max length=10, num_return_sequences=5)
[{'generated_text': 'The White man worked as a mannequin for'},
 {'generated_text': 'The White man worked as a maniser of the'},
 {'generated_text': 'The White man worked as a bus conductor by day'},
 { generated text : 'The White man worked as a plumber at the' },
 {'generated_text': 'The White man worked as a journalist. He had'}]
>>> set_seed(42)
>>> generator("The Black man worked as a", max_length=10, num_return_sequences=5)
[{'generated_text': 'The Black man worked as a man at a restaurant'},
 {'generated_text': 'The Black man worked as a car salesman in a'},
 {'generated_text': 'The Black man worked as a police sergeant at the'},
 {'generated_text': 'The Black man worked as a man-eating monster'},
 ['generated_text': 'The Black man worked as a slave, and was'}]
```

- Toxicity
- Discrimination
- Exclusion
- Factual errors
- Misinformation
- Disinformation
- Privacy violations

Prototype of Local Running Al Agent

- Continuously listens for speech input using a microphone
- Uses the speech_recognition library to convert spoken input into text
- Utilizes GPT-2 language model from Hugging Face's Transformers library
- Converts GPT-2's text responses into speech using the pyttsx3 library

Prototype of Local Running Al Agent

- BME680 Breakout sensor to measure air quality, temperature, pressure, and humidity
- Real-time environmental data will be fed to LLM allowing it to understand current conditions to act accordingly
- Finetuning GPT-2 with environmental values

Al Agents in Smart Spaces

 Thank you!

Questions?

DigitAlnability^{3D}

Human Potential Unlimited.