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Outline

* What are smart spaces?

* Role of Al and their applications

» Challenges of utilizing Al

= Al agents

= What can go wrong?

* Prototype of local running Al agent
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Smart Spaces

= Smart spaces are indoor environments < O{,
equipped with computational capabilities *
and interconnected IoT devices such as
sensors, actuators or machines

* They Interpret sensory data to offer
variety of applications to users

Sensors Applications

‘loT enables objects to connect,
communicate over the Internet’ Users

Data
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Key Components

= Sensor technologies

= Data communication

» Network management

= Data collection and processing

SMART
SPACES
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Sensor Technologies Data Communication
z a Environmental Wireless Communication
= Sensors Technologies
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Network
Management

* Energy management is important
for the deployment of battery
powered sensors

Data Collection
and Processing

» Sensors generate data with
different volumes, variaties, and
velacities

= Applications often require real-time
data processing
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Cloud Computing
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= Offers substantial computing power
= Concern of privacy

» Sending and receiving data takes
time

* Lower computational capabilities

* I[mproved privacy
* Reduce latency
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Example Applications

* Energy management

= Security

* Environmental monitoring
= Automation and control

N

Smart devices with Alexa
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Limitations

» Current systems typically rely on
rule based automation and manual

configuration without adapting user
behaviors

* They lack of capacity to interpret
data and generate meaningful
actions for the future

=To overcome these limitations, smart
spaces require Al-driven solutions
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Role of Al In Smart Spaces

I Large Language Models

Transformer Network

4

Deep Learning

Machine Learning

—

Evolution of Artificial Intelligence
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Traditional Machine Learning

Activity classification

Right leg (side) Right arm (top)

= Multi Layer Perceptron

» Random Forest

= Support Vector Machines
= K-Nearest Neighbors

O. Majidzadeh Gorjani, R. Byrtus, J. Dohnal, P. Bilik, J. Koziorek, and R.
Martinek, “Human activity classification using multilayer per ceptron,” Sensors,
vol. 21, no. 18, p. 6207, 2021.
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Deep Learning

People counting with IR sensors
= Convolutional Neural Networks

= Recurrent Neural Networks
= Autoencoders

* L ong Short-Term Memory
* The Gated Recurrent Unit
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Xie, C., Daghero, F., Chen, Y., Castellano, M., Gandolfi, L., Calimera, A.,
... & Pagliari, D. J. (2023). Efficient deep learning models for privacy-
preserving people counting on low-resolution infrared arrays. IEEE
Internet of Things Journal, 10(15), 13895-13907.
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Transformer-based Networks

Action anticipation

» Transformer networks are deep
learning architectures with self-
attention mechanism, allowing
them to capture important parts of
the data

Roy, D., & Fernando, B. (2021). Action anticipation using pairwise human-object
interactions and transformers. IEEE Transactions on Image Processing, 30, 8116-
8129.
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Transformer-based Networks Applications

Activity recognition

Journal.
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Large Language Models (LLMs)

* LLMs are deep learning models trained on
big datasets often comprising billions of
parameters b

» | everaging self-attention mechanism to
process and understand natural language

* LLMs access external data through
Retrieval-Augmented Generation (RAG)

(L

RAG §:®§ |

Contextually aware,
better responses
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OpenAl’s Generative Pre-trained Transformer (GPT)

Converting natural language
commands into actions

Activity classification

ADL-LLM
Text
Raw Sensor P d representation ~———
Data St i
ata Stream _ Sensor States Window2Text of the window | User Prompt
‘ Generation Construction
Sensor States ! T
Stream e
Sensor States
Segmentation —indew | output
LLM
Smart l—‘
Home Most likely )
activity Al:tiVity Label Only used in the few-shot mode!
o ety | Actwvitylabel " " T 7
Extraction r . Examples close
Semantic-based to the input
. o . Example Selection
You are an Al that controls a smart home. Here is the state of the Here's the updated state of the devices in the home, in JSON format: N )
devices in the home, in JSON format: {. ..} (...} - I -
The user issues the command: set up for a party. Change the device Explanation: In response to the command “set up for a party®, the Al 5_ }
state as appropriate. Provide your response in JSON format. has updated the device state as follows: ... [ Pool of
examples

King, E., Yu, H., Lee, S., & Julien, C. (2023). " Get ready for a party": Exploring smarter smart .
spaces with help from large language models. arXiv preprint arXiv:2303.14143. Civitarese, G., Fiori, M., Choudhary, P., & Bettini, C. (2024).

Large Language Models are Zero-Shot Recognizers for
Activities of Daily Living. arXiv preprint arXiv:2407.01238.
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Meta Al's Large Language Model (LIaMA)

* The LlaMA is a powerful family of autoregressive language models
designed to provide efficient, high-quality language understanding

Converting natural language commands into actions

Incident Harmony
Message Handler | cqeg Agent Controller
! Short
Help me sleep 3| User Utierance Nermary
better Short-term ( Memory Clarifying
Olperati Filteri
) e - =
ez
i Lighinof Light: O
55-15-::!' mes_sage :::::: = m-—LpEr # Lang-tem Plannin o Exectuing| |Matural Languape AT @ ezal AZ ==
Tiggers | | | | |ircource == matn Rich iEmary \ \ Command
Information
of Incident

Home Automation Platform

Sensors Triggers

Roams

Devices

Yin, Z., Zhang, M., & Kawahara, D. (2024). Harmony: A Home Agent for Responsive Management and Action
Optimization with a Locally Deployed Large Language Model. arXiv preprint arXiv:2410.14252.
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Google’s Bidirectional Encoder Representations from Transformers and Gemini

BERT Gemini

Detecting behavioral changes HVAC control for energy management

m Abnormal =
Abnormal A
- Normal
Logistic Regression Classifier 2o |
(Sigmoid) i
A Y 4 ]'Z-
eeotetoupn (NN HEENEE EEENEN RN 1|
A T 4 Tl
B
BERT (BASE) Encoder \ia
NEE NN NEE NN - NN EEE NEE i
Tokenization i 1 t { 9 3
' [CLS] || Steep | [ Meal || Prep | - | Leave || Home || [SEP] | ——
ADL Sequence Input Sleep MealPrep  ToiletUse WatchTV  Bathing LeaveHome

T. Sawada, T. Hasegawa, K. Yokoyama, and M. Mizuno,

“Office-in the-loop for building hvac control with multimodal
Akbari, F., & Sartipi, K. (2022, June). A Transformer-based Model for foundation models,” in Proceedings of the 11th ACM

Older Adult Behavior Change Detection. In 2022 IEEE 10th International International Conference on Systems for Energy-Efficient
Conference on Healthcare Informatics (ICHI) (pp. 27-35). IEEE. Buildings, Cities, and Transportation, 2024, pp. 110-120.
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Challenges of Utilizing Al

1. Energy consumption
2. Computational burden e Hi2r7

: : Ty L
3. Privacy and data security concerns e EE

a |
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Al Agents In Smart Spaces

= Al agents compute resources available

In the space according to user
preferences and predicts user behavior
to proactively offer services

Al-Driven Smart Space

U Natural language processing (e.g., voice commands) and predictive
personalization.

User Interaction

U Predictive healthcare, adaptive environments, and advanced

Applications analytics.

Challenges U High computational demand, privacy concerns
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What Can Go Wrong?

= Malicious exploits =
» Breaches of personal data Sm
* Loss of human oversight 206
= Bias in decision-making Sp

= EFthical concerns
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Bias in Decision-Making & Ethical Concerns

» set_seed(42)

= Toxicit
generator(“The White man worked as a“, max_length=10, num_return_sequences=5) )(l I
[1'generated_text': 'The White man worked as a mannequin for't, u Dlscr” I “natlon

generated_text': 'The White man worked as a maniser of the'f,

1'genexrated_text': 'The White man worked as a bus conductor by day':, H E | "
1'genexrated_text': 'The White man worked as a plumber at the'}, XC USIOn
» Factual errors
> set_seed(42) . . =
» generator("The Black man worked as a", max_length=10, num_return_sequences=5) [ | MISInformatlon

generated_text': 'The Black man worked as a man at a restaurant'},

= Disinformation
generated text': 'The Black man worked as a car salesman in a'?}, I I I

'generated_text': 'The Black man worked as a police sergeant at the'?,

man worked as a man-eating monster'}, u Privacy ViOlationS

man worked as a slave, and was'?}]

'

i'generated_text': *'The White man worked as a journalist. He had'%]

)
e

~

{'generated text': 'The Blac
T 5 -

i1 'generated_text': 'The Blac
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Prototype of Local Running Al Agent

Continuously listens for speech input using a microphone

Uses the speech_recognition library to convert spoken input into text
Utilizes GPT-2 language model from Hugging Face's Transformers library
Converts GPT-2's text responses into speech using the pyttsx3 library

:..ﬁl
loh %9’3
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Prototype of Local Running Al Agent

= BMEG680 Breakout sensor to measure
air quality, temperature, pressure, and
humidity

* Real-time environmental data will be fed
to LLM allowing it to understand current
conditions to act accordingly

* Finetuning GPT-2 with environmental
values
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